Als Universum wird allgemein die Gesamtheit aller Dinge bezeichnet. Im Speziellen meint man damit den Weltraum (Ältere Bezeichnung „Weltenraum“), oder auch Weltall oder Kosmos und bezeichnet die Welt bzw. das Weltall sowohl als das sichtbare Universum, als auch als geordnetes, harmonisches Ganzes.

Da der Übergang von der Erdatmosphäre zum Weltraum fließend ist, existieren mehrere festgelegte Grenzen. International am gebräuchlichsten ist die Definition der Fédération Aéronautique Internationale, nach der der Weltraum in einer Höhe von 100 Kilometern beginnt (Kármán-Linie). Dort ist die Geschwindigkeit, die benötigt wird, um Auftrieb zum Fliegen zu erhalten, gerade genauso hoch, wie die Umlaufgeschwindigkeit eines Raumflugkörpers, der durch die Schwerkraft der Erde auf einer Kreisbahn gehalten wird. Nach der Definition der NASA und der US Air Force beginnt der Weltraum bereits in einer Höhe von etwa 80 Kilometern (50 Meilen) über dem Boden. Eine völkerrechtlich verbindliche Höhengrenze gibt es nicht. Der Ausdruck Universum wurde im 17. Jahrhundert von Philipp von Zesen durch den Ausdruck Weltall eingedeutscht. Obwohl der Begriff Universum alles, also auch Sterne und Planeten und damit auch die Erde einschließt, wird mit Weltraum oft nur der Raum außerhalb der Erdatmosphäre bezeichnet.

Die allgemeine Relativitätstheorie von Albert Einstein ist die heute allgemein anerkannte Theorie zur Beschreibung der großräumigen Struktur des Universums. Auch die Quantenphysik hat wichtige Beiträge zum Verständnis speziell des frühen Universums geliefert, in dem die Dichte und Temperatur sehr hoch waren und viele Prozesse unter Beteiligung von Elementarteilchen abliefen (Astroteilchenphysik). Wahrscheinlich wird ein erweitertes Verständnis des Universums erst erreicht, wenn die Physik eine Theorie entwirft, die die allgemeine Relativitätstheorie mit der Quantenphysik vereint. Diese wird T.O.E. (Theory Of Everything), G.U.T. (Grand Unified Theory) oder auch Weltformel genannt. In dieser Theorie der Quantengravitation sollen die vier Grundkräfte der Physik (elektromagnetische Kraft, Gravitation, starke und schwache Kernkraft) einheitlich erklärt werden. Schon Albert Einstein hat sich viele Jahre erfolglos um die Aufstellung einer solchen allumfassenden Theorie bemüht. Außerdem waren in seinem Konzept die starke und schwache Wechselwirkung nicht enthalten. Erst in den 1960er Jahren standen die mathematischen Voraussetzungen für die Entwicklung einer Vereinigungstheorie zur Verfügung, womit die Suche der Physiker nach diesem großen einheitlichen Bild der Welt begann.

Die Kosmologie, ein Teilgebiet sowohl der Physik als auch der heutigen Philosophie der Naturwissenschaften, befasst sich mit dem Studium des Universums und versucht Eigenschaften des Universums wie beispielsweise die Frage nach der Feinabstimmung der Naturkonstanten zu beantworten.

Die uns am nächsten gelegene, größere Galaxie ist die Andromeda-Galaxie.

Die klassische und heute weithin anerkannte Urknalltheorie geht davon aus, dass das Universum in einem bestimmten Augenblick, dem Urknall, aus einer Singularität heraus entstand und sich seitdem ausdehnt. Allerdings bleibt in diesem Modell offen, was vor dem Urknall war und wodurch er verursacht wurde. Zeit, Raum und Materie sind jedoch gemäß der Urknalltheorie erst mit dem Urknall entstanden. Dadurch wird der Frage nach dem „davor“ die Grundlage entzogen, denn einen Raum, in dem etwas hätte stattfinden können, gab es vor dem Urknall nicht. Hinzu kommt, dass ein Zeitpunkt vor dem Urknall rein physikalisch nicht definierbar ist. Da die naturwissenschaftlichen Gesetze für die extremen Bedingungen während der ersten etwa 10−43 Sekunden (Planck-Zeit) nach dem Urknall nicht bekannt sind, beschreibt die Theorie den eigentlichen Vorgang streng genommen überhaupt nicht. Erst nach Ablauf dieser Planck-Zeit können die weiteren Abläufe physikalisch nachvollzogen werden. So lässt sich dem frühen Universum z. B. eine Temperatur von 1,4 • 1032 K (Planck-Temperatur) zuordnen.

Das Alter des Universums ist aufgrund von Präzisionsmessungen durch das Hubble-Weltraumteleskop mithilfe von Gravitationslinsen mit 13,75 Milliarden Jahren relativ genau berechenbar. Das Universum ist maximal 170 Millionen Jahre älter oder 150 Millionen Jahre jünger als dieser Wert. Eine frühere Ermittlung des Alters durch den Satelliten WMAP ergab das etwas ungenauere Ergebnis von 13,7 Milliarden Jahren.

Das Alter kann auch durch Extrapolation von der momentanen Expansionsgeschwindigkeit des Universums auf den Zeitpunkt, an dem das Universum in einem Punkt komprimiert war, berechnet werden. Diese Berechnung hängt aber stark von der Zusammensetzung des Universums ab, da Materie bzw. Energie durch Gravitation die Expansion verlangsamen. Die bisher nur indirekt nachgewiesene Dunkle Energie kann die Expansion allerdings auch beschleunigen. So können verschiedene Annahmen über die Zusammensetzung des Universums zu verschiedenen Altersangaben führen. Durch das Alter der ältesten Sterne kann eine untere Grenze für das Alter des Universums angegeben werden. Im aktuellen Standardmodell stimmen beide Methoden sehr gut überein.

Sämtliche Berechnungen für das Alter des Universums setzen voraus, dass der Urknall tatsächlich als zeitlicher Beginn des Universums betrachtet werden kann, was wegen Unkenntnis der physikalischen Gesetze für den Zustand unmittelbar nach Beginn des Urknalls nicht gesichert ist. Zwar kann ein statisches Universum, das unendlich alt und unendlich groß ist, ausgeschlossen werden, nicht jedoch ein dynamisches unendlich großes Weltall. Dieses wird unter anderem durch die beobachtete Expansion des Weltalls begründet. Des Weiteren wies schon der Astronom Heinrich Wilhelm Olbers darauf hin, dass bei unendlicher Ausdehnung und unendlichem Alter eines statischen Universums der Nachthimmel hell leuchten müsste (Olberssches Paradoxon), da jeder Blick, den man gen Himmel richtet, automatisch auf einen Stern fallen müsste. Ist das Universum allerdings unendlich groß, hat aber nur ein endliches Alter, so hat uns das Licht von bestimmten Sternen einfach noch nicht erreicht.

Im intergalaktischen Raum beträgt die Materiedichte etwa ein Wasserstoff-Atom pro Kubikmeter, innerhalb von Galaxien ist sie jedoch wesentlich höher. Desgleichen ist der Raum von Feldern und Strahlung durchsetzt. Die Temperatur der Hintergrundstrahlung beträgt derzeit 2,7 Kelvin (also etwa −270 °C). Sie entstand 380.000 Jahre nach dem Urknall und wird auch als Geburtsschrei unseres Universums bezeichnet. Das Universum besteht nur zu einem kleinen Teil aus uns bekannter Materie und Energie (4 %), von der wiederum nur 10 % Licht aussendet und dadurch sichtbar ist; den größten Teil macht eine, durch eine Vielzahl von Beobachtungen indirekt nachgewiesene, aber bis heute weitgehend unverstandene „dunkle Materie“ (23 %) und die „dunkle Energie“ (73 %) aus, die für die beschleunigte Expansion verantwortlich ist. Auf die dunkle Energie wurde aus den Daten von weit entfernten Supernovaexplosionen geschlossen, ihre Existenz wird durch Satelliten wie COBE und WMAP und Ballonexperimente wie BOOMERANG sowie Gravitationslinseneffekte und die Galaxienverteilung im Universum bestätigt. Die Gesamtmasse des sichtbaren Universums liegt zwischen 8,5 • 1052 und 1053 kg. Arthur Eddington vermutete bereits 1938, dass es genau 136 • 2256, oder ungefähr 1,57 • 1079 Protonen und Elektronen gibt, mit einer Masse von 2,64 • 1052 kg. Zu dieser Masse kommt noch die Masse der Neutronen. Man nimmt an, dass es zusätzlich Dunkle Energie gibt, die dann auch eine Masse trägt. In der Theorie wird diese durch ihre antigravitative Wirkung ausgezeichnet. Mit ihr versucht man zu erklären, warum es nicht zum gravitativen Kollaps kommt. Bei entsprechend hoher Anfangstemperatur und niedriger Dichteverteilung kann aber auch die kritische Expansionsgeschwindigkeit erreicht werden, so dass eine unendliche Ausdehnung gegen die Schwerkraft möglich wäre.

Die Anschauung könnte die Vermutung nahe legen, dass aus der Urknalltheorie eine „Kugelform“ des Universums folge; das ist jedoch nur eine von mehreren Möglichkeiten. So wurden neben einem flachen unendlichen Universum viele andere Formen vorgeschlagen. Darunter beispielsweise eine Hypertorusform, oder auch die in populärwissenschaftlichen Publikationen als „Fußballform“ und „Trompetenform“ bekannt gewordenen Formen. Einige Daten des Satelliten WMAP sprechen auch dafür, dass das Universum ein Ellipsoid ist.

Im CDM-Standardmodell (CDM von engl. Cold Dark Matter, „kalte dunkle Materie“) sowie dem aktuelleren Lambda-CDM-Standardmodell, das die gemessene Beschleunigung der Expansion des Universums berücksichtigt, ist das Universum flach, das heißt, der Raum wird durch die euklidische Geometrie beschrieben. Ein solches Universum muss nicht zwingend ein unendliches Volumen haben, da auch kompakte Topologien für den Raum möglich sind. Auf der Basis der verfügbaren Beobachtungen kann derzeit nur eine grobe untere Grenze für die Ausdehnung des Universums angegeben werden. Daten des Satelliten WMAP schließen nach Neil Cornish die meisten Beschreibungsmodelle des Universums, die einen Radius kleiner als 78 Milliarden Lichtjahre besitzen, aus. Im Lambda-CDM-Standardmodell wird daher meist eine flache Geometrie mit unendlicher Ausdehnung betrachtet.

Wichtig ist der Unterschied zwischen Unendlichkeit und Unbegrenztheit: Auch wenn das Universum ein endliches Volumen besitzen würde, so könnte es dennoch unbegrenzt sein. Leicht anschaulich lässt sich dieses Modell folgendermaßen darstellen: eine Kugeloberfläche (Sphäre) ist endlich, besitzt aber keinen Mittelpunkt und ist unbegrenzt (man kann sich auf ihr fortbewegen, ohne jemals einen Rand zu erreichen). So wie eine zweidimensionale Kugeloberfläche eine dreidimensionale Kugel umhüllt, kann man, falls das Universum nicht flach, sondern gekrümmt ist, sich den dreidimensionalen Raum als „Rand“ eines höherdimensionalen Raums vorstellen. Wohlgemerkt dient dies lediglich der Veranschaulichung, denn das Universum ist in der klassischen Kosmologie nicht in einen höherdimensionalen Raum eingebettet.

 

Quelle: Wikipedia 

Nach oben